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ABSTRACT 
 
Ground granulated blast-furnace slags (GGBFS), as a hydraulic binder, are widely 
used for many years in engineering concretes. The French standards allow 
substituting 50% of Portland cement by GGBFS. This approach leads to a decrease 
in the CO2 emissions produced during clinkerisation process. Portland cement 
substitution by GGBFS can also improve the workability, decreases the hydration 
heat and increases the long-term compressive strength. GGBFS can also 
significantly improve the resistance to sulfate attack. Concrete structures made with 
GGBFS cement can be cracked at early age due to restrained shrinkage. This 
cracking can reduce mechanical and transport properties, leading to an increased 
risk of aggressive agents’ penetration. Self-healing of cracks, already observed on 
building sites, could partially overcome these durability issues. 
To understand the effect of GGBFS on self-healing kinetics and the type of self-
healing products, five hydraulic binders were studied: two Portland cement (French 
and Canadian), two GGBFS (French and Canadian) mixed with Portland cement 
(named GGBFS formulation hereafter) and a French blended cement (62% of slag) 
named CEMIII/A. Each material was characterized by XRF, XRD, PZD test, fineness 
Blaine test and TGA. At 7 and 28 days, French and Canadian mortar specimens 
were cracked respectively to obtain three crack sizes: 50, 100 and 150 µm. The 
cracked specimens were then stored at 23 °C and 100% R.H for up to 6 months. The 
evolution of self-healing is followed by X-ray tomography or air-flow measurements. 
SEM with EDS were performed on the sawed samples to identify and analyze self-
healing products. 
Results show that two main products are formed: (1) calcite by the carbonation of 
portlandite in the matrix, and (2) supplementary reaction products (mainly C-S-H with 
various C/S ratios), formed by the reaction of anhydrous particles. Both GGBFS 
formulations show a good self-healing potential but the kinetics of the phenomenon 
are slightly different. Mortar made with French GGBFS presents the best self-healing 
potential compared to the four others formulations. Mortar with Canadian GGBFS 
presents a similar behavior as Canadian Portland cement. These results can be 
explained by the material characteristics but also by their hydration kinetics. A 



hydration model is currently developed in order to investigate more deeply these 
observations. 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 
 

Self-healing of concrete presents a great interest to improve the structure durability 
after cracking but the improvement of mechanical properties is not yet clear. Some 
researches have shown a stiffness recovery but there is no agreement about the 
strength recovery [1, 2]. Moreover, very few studies exist on the effects of blast-
furnace slag on self-healing. The latent hydraulic properties of the blast-furnace slag 
could improve the self-healing potential. To better understand the effect of slag and 
the impacts of materials characteristics and testing conditions on the chemical and 
mechanical properties of self-healing products, five cracked mortars were submitted 
to X-ray Tomography, air-flow measurements, SEM with EDS and nanoindentation 
measurements.  
 
2. MATERIALS AND METHODS 
 
Five mortars compositions are used: 1) 100% of French Portland cement CEMI 52.5 
N CP2 NF; 2) 50% of CEMI 52.5 N CP2 NF and 50% of blast-furnace slag; 3) 100% 
of CEMIII/A (French industrial cement); 4) 100% of Canadian General Use Portland 
cement (GU); 5) 50% of GU and 50% of Canadian blast-furnace slag. These 
compositions are named: CEMI, CEMI+S, CEMIII/A, GU, GU+S respectively. All the 
mortars have a W/B ratio in the range of 0.50-0.52. The binder content is 563 kg/m3 
in all the mortar mixtures with Portland cement and 539 kg/m3 for others. The sand 
used has a normalized size (respectively EN 196-1 for French sand and ASTM C178 
for Canadian sand). 
Two experimental approaches were used to assess the kinetics of the self-healing 
phenomenon at early age. The first consists in monitoring the crack size in mortar 
samples (diameter Ø = 4 cm and height h = 10 cm) with a tomograph. Only the 
mortars made with CEMI, CEMI+S CEMIII/A binders were tested with this technique. 
A tensile splitting test at the age of 7 days was used to produce cracks with opening 
ranging from 71 µm to 289 µm. The cylindrical specimens were confined with a two-
component resin reinforced with a fiberglass mat [3]. After cracking and between 
measurements, samples were stored under tap water at 23°C. The tomography 
analysis was performed at different ages (cracking day, 7, 14, 21 and 28 days). 
The second experimental approach consists in measuring air flow to assess self-
healing in mortars cracked at 7 days with a mechanical expansive core [3]. Only the 
mortars made with GU and GU+S were tested with this technique. Mortar samples 
were cylindrical disks with a central hub (diameter Ø = 15 cm and height h = 5 cm). A 
mechanical expansive core was inserted in the sample hub to create a radial crack of 
controlled opening. All mortar disks were stored in a100% RH – 23 °C room for the 
initial 7-day curing before cracking and for up to 3 months after cracking (self-healing 
environment). Measurements of the air-flow in the cracks were performed at one and 
three months after the cracking. Before each air-flow measurement mortar disks were 
stored at35°C for 24 h to remove water in the crack volume. 
 In parallel, thermogravimetrical analysis was performed to assess the hydration 
degree. At the end of the elf-healing testing program, mortar specimens were broken 
to take samples for characterization of the healing products by SEM - EDS analysis. 
Moreover, one mortar specimen was observed and analyzed using a nanoindentator 
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3. RESULTS 
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Figure 1. Evolution of the volume of the
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Figure 2. Evolution of the air
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Evolution of the air-flow over time for mortars made with GU and GU+S 
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